17BT002 UPSTREAM & DOWNSTREAM PROCESSING

Hours Per Week:

L	T	P	C
3	1	2	5

L	T	P
45	-	2

BS	SA	CS	WA/RA	SSH	S
5	8	1-5	5	40	1-5

Course Description and Objectives:

This course helps to familiarize students with the downstream section of a bioprocess for the production of biotechnological products. To familiarize the student regarding removal of insoluble's, product isolation, high-resolution techniques and product polishing.

Course Outcomes:

Upon successful completion of this course, the student will be able to

- Design the fermentation medium
- Operate the electrophoresis unit
- Use the chromatographic methods
- Understanding of current purification technologies

SKILLS TO BE ACQUIRED:

- ➤ Able to separate the product of interest
- ➤ Able to eliminate trace contaminants and impurities
- ➤ Able to operate sonicator
- ➤ Able to use the chromatography techniques

ACTIVITIES:

- Preparation fermentation medium
- Use of chromatography techniques for separation of bioproducts
- Use of Electrophoresis units and gel preparation
- > Experiments on Cell disruption methods

UNIT - I

Upstream processing: Integrated bioprocesing, Inoculum media for industrial fermentation, Fermentation Media - Media composition, Media sterilization and contamination, Media economics, Screening for fermentation media.

UNIT - II

Primary Separation and Recovery Processes: Cell disruption methods for intracellular products, removal of insolubles, Biomass (and particulate debris) separation techniques, flocculation and sedimentation, centrifugation and Filtration methods.

UNIT - III L-9

Enrichment Operations: Membrane based separations micro and ultra filtration theory, design and configuration of Membrane separation equipment, applications, Precipitation methods (with salts, organic solvents, and polymers) Extractive separations, aqueous two-phase extraction, Insitu product removal.

UNIT - IV

Product Resolution / Fractionation and polishing: Adsorptive chromatographic separation processes, Electrophoretic separations (all electrophoresis techniques including capillary electrophoresis), Gel Permeation Chromatography, dialysis, Crystallization.

UNIT - V

New and Emerging Techniques:

Pervaporation, Super critical extraction, foam based separation, Product recovery trains-few examples.

LABORATORY EXPERIMENTS

LIST OF EXPERIMENTS

1. Chromatography techniques - Paper, TLC, HPLC, Gel filtration & Ion exchange chromatography.

Total hours: 30

- 2. Electrophoresis &Blotting techniques-Native- PAGE, SDS-PAGE &Western Blot technique.
- 3. Solid separation methods Filtration, Sedimentation, Centrifugation, Product enrichment operations Liquid-Liquid extraction and Two-phase aqueous Extraction.
- 4. Protein precipitation and its recovery.
- 5. Product crystallization and drying.

TEXT BOOKS:

- 1. James E Bailey, David F., "Ollis, Biochemical Engineering Fundamentals", 2nd Ed., Mc Graw Hill, 1993.
- 2. Asenjo J.M., "Separation Processes in Biotechnology", Marcel Dekker Inc. 1993.
- 3. "Product Recovery in Bioprocess Technology", BIOTOLSeries, VCH, 1990.

REFERENCE BOOKS:

- 1. Wankat P.C, "Rate Controlled Separations", Elsevier, 1990.
- 2. Belter PA and Cussler E, "Bioseparations", Wiley, 1985
- 3. McCabe, Smith, Harriott, "Unit Operations of Chemical, Engineering", 5th ed., Tata Mc Graw Hill.