IV Year I Semester

L T P To C

MT 437 MACHINE INTELLIGENCE (ELECTIVE - IV)

Course Description & Objectives:

This course strives to emphasize important unifying themes that occur throughout many areas of AI research by taking advantages of recent exciting multidisciplinary advances in understanding and modeling the brain.

Course Outcomes:

On completion of this course, students would be able to:

- 1. familiarize with artificial intelligence and symbolic logic
- 2. acquire knowledge about acquisition and representation
- 3. learn reasoning and KRR system as well as learn use of uncertainty

UNIT I: Overview of Artificial Intelligence:

Introduction, History, Applications, Objectives, Programming, Criticism, Future UNIT II: Symbolic Logic:

Introduction, Logic, Propositions, Normal Forms in Propositional Logic, Logical Consequences, Resolution Principle, Predicate Calculus, Well-Formed Formulas (WFFs), Clausal Form, Rules of Inference, Unification, Resolution, Rule-Based Expert Systems, The Prolog Language.

UNIT III: Knowledge Acquisition and Representation:

Introduction, Machine Intelligence, Knowledge Engineering, Procedure for Knowledge Acquisition, Knowledge Representation, Logical Representation Schemes, Procedural Representation Schemes, Network representation Schemes, Structured Representation Schemes.

UNIT IV: Reasoning and KRR Systems:

Introduction, Reasoning, Knowledge Representation and Reasoning (KRR) System, Knowledge Representation (KR) Languages, Domain Modeling, Semantic Nets (Associative Networks), Reasoning Systems, Frame Based Systems, Hybrid Representation Systems.

UNIT V: Uncertainty:

Introduction, Non-monotonic and Monotonic Reasoning, Confidence Factor, Bayes Theorem, Theory of Evidences, Non-classical Logics, Default Logic, Bayesian Networks, Fuzzy Logic, Problem Representation, Definitions, Representation Schemes, Problem Solving in AI, Blind Search Techniques, Heuristic Search Techniques, Game Searches.

TEXT BOOK:

1. Rajendra Akerkar, "Introduction to Artificial Intelligence", Prentice Hal

Mechatronics 117

India, 2005.

REFERENCES:

- 1. Stuart Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", 2nd ed., Prentice Hall India, 2008.
- 2. Kevin L. Priddy, Paul E. Keller, "Artificial Neural Networks An Introduction", Prentice Hall India, 2007.

IV Year I Semester

L T P To C

MT 439 LEAN MANUFACTURING (ELECTIVE -IV)

Course Description & Objectives:

This course helps students understanding all good manufacturing and management practices for improving productivity of a typical manufacturing industry.

Course Outcomes:

On completion of this course, students would be able to:

- 1. understand lean production and its importance
- 2. acquire knowledge about different processes for lean production
- 3. familiarize with TPM and employee involvement in industries

UNIT I: Lean Production:

Introduction, background, lean thinking, Importance of lean production philosophy, strategy, culture, alignment, focus and systems view, Discussion of Toyota Production System.

UNIT II: Lean Production Processes:

Lean production preparation, System assessment, Process and value-stream mapping, Sources of waste, Lean production processes, Approaches and techniques.—Importance of focusing upon flow.

UNIT III: Lean Manufacturing Tools:

Workplace organization, 5S, Stability, Just-In-Time, One piece flow, Pull, Cellular systems, Quick change and set-up reduction methods.

UNIT IV: Total Productive Maintenance:

Poka-Yoke, mistake proofing, quality improvement, Standards, Leveling, Visual management.

UNIT V: Employee Involvement:

Teams, Training, Supporting and encouraging involvement, Involving people in the change process, communication, Importance of culture. **Case studies:** Startup of lean processes and examples of applications, Sustaining improvement and change, auditing, follow-up actions.

Mechatronics 118