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Abstract: Many things in nature are periodic: the seasons of the year, 

the phases of the moon, the vibration of a violin string, and the 

beating of the human heart. In each of these cases, the events occur in 

repeated cycles, or periods. In this project, you will investigate the 

periodic motion of a spring, using a mini Slinky®. You can also 

measure the motion of your spring using Google's Science 

Journal app. Basic physics will then allow you to determine the 

Hooke's Law spring constant. Your analysis will also yield the 

effective mass of the spring, a factor that is important in real-world 

engineering applications. 

Introduction 

Objective 

Periodic or oscillatory motion is common throughout the universe, 

from the smallest to the largest distance and time scales. This kind of 

motion is related to the forces acting between objects by Newton’s 

2nd law, just as all motions are. To have oscillatory motion, there must 

be a restoring force that acts in a direction to cause an object to return 

to its equilibrium position. A particularly common type of oscillatory 

motion results when the magnitude of the restoring force is directly 

proportional to the displacement of the object from equilibrium: 

Frestoring=−kx(8.5.1)(8.5.1)Frestoring=−kx 

This is the force law characteristic of a spring that is stretched or 

compressed from its equilibrium position. The oscillatory motion that 

results from this force law is known as simple harmonic 

motion (SHM). 

Even when the force law is not as simple as Equation 8.5.18.5.1 for 

arbitrary values of xx, it turns out that for an object that oscillates about 

an equilibrium position, this linear law provides an accurate description 

for small oscillations. Thus, we can make a very strong statement: 

https://goo.gl/wst48K
https://goo.gl/wst48K
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_7B_-_General_Physics/8%3A_Detailed_Relation_of_Force_to_Motion/8.5%3A_Simple_Harmonic_Motion_Model#mjx-eqn-Eq1


essentially every system that vibrates, does so in SHM for small 

amplitudes of vibration. 

Because it is so common, it is worth spending some effort 

understanding SHM and the different ways to represent it. Another 

reason for focusing on SHM is that periodic wave motion is the 

interconnected vibrations of many, many oscillators, each vibrating 

in SHM. 

Simple Harmonic Motion 

Our approach is to use the tools we have at our disposal, namely, 

Newton’s 2nd law, to analyze the motion of several different physical 

systems that exhibit oscillatory motion. We will look for common 

features of the motion and its description. Then, we will generalize the 

description and representation. In this process we will develop explicit 

mathematical expressions to represent the motion and we will see how 

properties of the motion such as the period of oscillation are related to 

the physical parameters of the particular phenomena. In this process we 

will revisit the energies involved in oscillating systems and gain a 

deeper understanding of the energy relationships. 

First System: Mass on a Spring 

We consider a mass hanging on a spring. There are two forces acting 

on the mass: the pull upward of the spring and the gravity force of the 

Earth pulling down. We saw previously that if we take x to be the 

distance from the equilibrium position of the mass as it hangs 

motionless on the spring, then the net force has the form 

∑F=−kx(8.5.2)(8.5.2)∑F=−kx 

Now we apply Newton’s 2nd law: net force equals mass times 

acceleration 

−kx=ma,or(8.5.3)(8.5.3)−kx=ma,or 

−kx=md2xdt2(8.5.4)(8.5.4)−kx=md2xdt2 



This is called a differential equation, because it involves derivatives of 

x. A standard way to write this equation that will be useful as we 

compare different systems is 

a=d2dt2x(t)=−kmx(t)(8.5.5)(8.5.5)a=d2dt2x(t)=−kmx(t) 

Let’s note several things about this equation. Its solution will be a 

mathematical expression that gives the position x as a function of the 

time tt. The equation says that if we differentiate this function twice, 

we get back the same function multiplied by the negative constant -

k/m (k and m are both positive constants). Also, the acceleration, 

a=d2dt2x(t)(8.5.6)(8.5.6)a=d2dt2x(t) 

is not constant. Rather, the acceleration is proportional to the 

displacement from equilibrium, but with the opposite sign. 

What kind of function, when differentiated twice, gives back the same 

function, but with a negative constant coefficient? Perhaps you 

remember from your calculus course which function has this property. 

If you do not, that is OK. What’s important is to understand the 

properties of the solution, not how to get the solution. There are two 

functions that have the property we desire. One is the sine function and 

the other is the cosine function. The second derivative 

of Asin(bt)Asin⁡(bt) with respect to tt (when A and b are constants) 

is −b2Asin(bt).−b2Asin⁡(bt). That is, 

d2dt2Asinbt=−Ab2sinbt(8.5.7)(8.5.7)d2dt2Asin⁡bt=−Ab2sin⁡bt 

And similarly for the cosine function. 

We compare Equation 8.5.78.5.7 to the equation for the mass on a 

spring, 

d2dt2x(t)=−kmx(t)(8.5.8)(8.5.8)d2dt2x(t)=−kmx(t) 

we notice that they are the same if b2b2 equals k/mk/m. If we make 

that substitution, we get 

http://mathwiki.ucdavis.edu/Core/Analysis/Ordinary_Differential_Equations/1%3A_First_Order_Differential_Equations/Classification_of_Differential_Equations
https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_7B_-_General_Physics/8%3A_Detailed_Relation_of_Force_to_Motion/8.5%3A_Simple_Harmonic_Motion_Model#mjx-eqn-Eq5


x(t)=Asin(kmt−−−√)(8.5.9)(8.5.9)x(t)=Asin⁡(kmt) 

differentiating twice with respect to t and see if you do not get the 

function x(t)x(t) back multiplied by the negative constant -k/m. 

These two functions (the sine and the cosine) are solutions of the 

differential equation we obtained by applying Newton’s 2nd law to the 

mass hanging on the spring. These functions repeat every time the 

angle btbtincreases by 2π2π. Thus, the time to complete one oscillation 

is that value of tt that satisfies the relation bt=2πbt=2π. This time is 

called the period and is denoted by the letter TT. It is equal 

to 2π/b2π/b. 

T=2πb=2πmk−−−√(8.5.10)(8.5.10)T=2πb=2πmk 

Note that we know the period if we know the values of the factors that 

appear in Newton’s 2nd law (mass and spring constant). 

We can now write the differential equation in terms of TT. 

d2dt2x(t)=−(2πT)2x(t)(8.5.11)(8.5.11)d2dt2x(t)=−(2πT)2x(t) 

and the possible solutions also in terms of TT: 

x(t)−Asin2πtT(8.5.12)(8.5.12)x(t)−Asin⁡2πtT 

or 

x(t)=Acos2πtT(8.5.13)(8.5.13)x(t)=Acos⁡2πtT 

Before pursuing the analysis of the spring mass system further, we will 

look at another system. Then we will generalize our results and discuss 

them in much more detail. 

Second System: Simple Pendulum 

We consider a mass hanging on a lightweight string. The mass swings 

back and forth when pulled aside and released. How do we apply 

Newton’s 2nd law? 



We first identify the objects and all the forces 

acting on the objects. Then, the Net Force acting on any particular 

object is equal to the product of the mass and acceleration of that object. 

In the case of our pendulum, the object of interest is the bob. (In our 

model, the mass of the string is negligible.) Two forces act on the bob 

- the tension in the string directed along the string, and the gravitational 

pull of the earth straight down on the bob. The vector sum of these two 

forces is the net force or unbalanced force. The motion is constrained 

to be along the arc of a circle with radius equal to the length of the 

string, l. The tangential component of the net force, that is, the force 

tangent to the path the bob takes, is the component that causes the bob 

to speed up or slow down along this path. (The component of the net 

force along the string causes the bob to move in a circle, and is 

dependent on the instantaneous speed. We do not need to be concerned 

with this radial force now.) 

To proceed, we draw a force diagram (Figure 8.5.1), showing the forces 

acting on the bob. Applying Newton’s 2nd law along the tangential 

direction gives 

 

Figure 8.5.1 



mgsinθ=−matangential(8.5.14)(8.5.14)mgsin⁡θ=−matangential 

The minus sign tells us that at angential is opposite to the direction of 

increasing θθ. It is useful to express atangentialatangential 

in terms of θθ.Since a atangentialatangential is the second derivative of 

a distance moved along the arc, and since a distance along the arc is 

simply the product of lθlθ , atangential=ld2θ/dt2atangential=ld2θ/dt2. 

Then, 

mgsinθ=−mld2θdt2(8.5.15)(8.5.15)mgsin⁡θ=−mld2θdt2 

and cancelling out the mass 

gsinθ=−ld2θdt2(8.5.16)(8.5.16)gsinθ=−ld2θdt2 

This looks almost like our equation of motion for a mass on a spring. 

The difference is we have a sinθsin⁡θ in stead of θθ on the left hand 

side. Perhaps for small oscillations, that is small values of θθ, we can 

replace sinθsin⁡θ with θθ. 

If we make this approximation (substituting for sin and then group the 

constants together on the left hand side) we get: 

−glθ=d2θdt2(8.5.17)(8.5.17)−glθ=d2θdt2 

If we put this in standard form, we can easily compare it to the equation 

we got for the mass oscillating on a spring. 

simplependulum:d2θdt2=−glθ(t)(8.5.18)(8.5.18)simplependulum:d2θ

dt2=−glθ(t) 

massonspring:a=d2xdt2=−kmx(t)(8.5.19)(8.5.19)massonspring:a=d2x

dt2=−kmx(t) 

The similarity in these two equations. Except for the name of the 

variable, θθ or xx, which is arbitrary, they have the identical form. 



We saw before, that in terms of the period to make a complete 

oscillation, we could write the expression for x(t)x(t) as: 

d2dt2x(t)=−(2πT)2x(t),where(8.5.20)(8.5.20)d2dt2x(t)=−(2πT)2x(t),w

here 

(2πT)2=km←T=2πmk−−−√(8.5.21)(8.5.21)(2πT)2=km←T=2πmk 

Now by comparing the pendulum equation to the mass and spring 

equation, we see that the relation giving the period for a pendulum must 

be: 

(2πT)2=gl←T=2πlg−−√(8.5.22)(8.5.22)(2πT)2=gl←T=2πlg 

Also, since the equation for the mass on a spring and the equation for 

the pendulum are in fact the same equation with different constants, 

they must have the same solution. So the mathematical function that 

worked for the mass-spring, must work for the simple pendulum, too. 

The distinguishing feature that makes these equations similar is that the 

acceleration is proportional to the displacement, but with the opposite 

sign. This is the unique feature that leads to simple harmonic motion 

(SHM). 

Before going any further with the analysis of SHM, it is useful to 

investigate its general properties. This is what we will now do. 

I am not sure if this is more of a maths problem than a physics if so 
could admin place in the math stack. 

So my question is as follows. I have recently been looking at SHM in a 
spring-mass, as shown by the picture 



Limitations of Simple Harmonic motions:

 

and it got me thinking about the equation of motion of SHM the 

conditions needed for SHM to occur specifically the maximum and 

minimum value of displacement. 

What I mean but maximum and minimum values are like so. A 

condition for SHM is that the acceleration of the object is 

Conclusion: 

ODEs are the cornerstone of understanding and analyzing simple 

harmonic motion (SHM). They empower us to predict and analyze the 

behavior of oscillating systems, revealing their position, velocity, 

frequency, period, and amplitude. This capability allows us to model 

real-world phenomena like vibrating molecules, AC circuits, and even 

the classic mass-spring system. Furthermore, ODEs can be modified 

to incorporate the effects of damping and external forces, enabling us 

to study their impact on the oscillation, making them an invaluable 

tool across various scientific and engineering disciplines. 
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ABSTRACT:- 

we are going to prove complete conjunctive 

normal form as ‘0’, and complete 

disjunctive normal form, as ‘1’. And 

drawing the truth table for the both ccnf and 

cdnf. 

To proving them we are using distributive 

law also. 

INTRODUCTION:- 

What is conjunctive normal form? 

Ans:- The Boolean function is expressed as 

product of max terms then it is called cnf. 

Expression:-

f(x,y,z)=.(x+y+z).(𝑥|+𝑦|+z).(x+y+𝑧|) 

What is complete conjunctive normal 

form?  

  Ans:- The Boolean function is expressed is 

expressed as product of all 2𝑛  max terms of 

‘n’  variables then it is called complete 

conjunctive normal form 

EXPRESSION:- 

F(x, y, z) = (x + y + z).(x’+ y’+ z) •  

(x’+ y + z') • (x’+ y + z).(x + y + z) •  

(x’ + y + z) • (x + y’+ z) • (x’+ y'+z') 

 

What is disjunctive normal form? 

ANS:- the Boolean expression is expressed 

as sum of the min terms (or) products terms 

is called dnf. 

EXPRESSION:- 

f(x,y)=xyz+𝑥|+𝑦|+z+𝑥|+𝑦|+𝑧| 

What is complete disjunctive normal 

form? 

ANS:- the Boolean expression is expressed s 

sum of all 2𝑛 min term of ‘n’ variable is 

called cdnf. 

Expression:- F(x,y,z)=          

(x+y+z).(x+y+𝑧|).(x+𝑦|+z).(x+𝑦|+𝑧|). 

(𝑥|+y+z).(𝑥|+y+𝑧|).(𝑥|+𝑦|+z).(𝑥|+𝑦|+𝑧|) 

Proof of ccnf:- 

Given three variables are x,y,z   

      f(x,y,z)  so for ccnf we want write in 2𝑛   

       They given 3 variables x,y,z  so    23 =8 

So expression in ccnf is  

        F(x,y,z)=(x+y+z).(x+y+𝑧|).(x+𝑦|+z). 

(x+𝑦|+𝑧|).(𝑥|+y+z).(𝑥|+y+𝑧|). 

(𝑥|+𝑦|+z).(𝑥|+𝑦|+𝑧| 

So this is 8 expressions now we want prove the 

expression is zero 

F(x,y,z)=  

(x+y+z).(x+y+𝑧|).(x+𝑦|+z).(x+𝑦|+𝑧|).(𝑥|+y

+z).(𝑥|+y+𝑧|).(𝑥|+𝑦|+z).(𝑥|+𝑦|+𝑧|) 

we know distributive form is  

a+(b*c) =(a+b).(a+c) 

       F(x,y,z)=((x+y)+(z. 𝑧|) ) .((x+𝑦|)+ 

                     (z. 𝑧|)).((𝑥|+y)+(z. 𝑧|)).         

((𝑥|+𝑦|)+(z. 𝑧|))  

   According zero property (x. 𝑥|=0) 

here z. 𝑧| becoming zero  

=      (x+y). (x+𝑦|). (𝑥|+y).(𝑥|+𝑦|)  

             =      (x+y. 𝑦|). (𝑥| + y. 𝑦|)        

(zero property) 



 

 

=     x. 𝑥| 

=      0        

So we prove ccnf is zero for given 

expression 

TRUTH TABLE FOR CCNF:- 

 

Conversion ccnf into cdnf:- 

F(x,y,z)=  

(x+y+z).(x+y+𝑧|).(x+𝑦|+z).(x+𝑦|+

𝑧|).(𝑥|+y+z) 

.(𝑥|+y+𝑧|).(𝑥|+𝑦|+z).(𝑥|+𝑦|+𝑧|) 

F(X,Y,Z)=  

(x+y+z).(x+y+𝑧|).(x+𝑦|+z).(x+𝑦|+

𝑧|). 

(𝑥|+y+z).(𝑥|+y+𝑧|).(𝑥|+𝑦|+z).(𝑥|+

𝑦|+𝑧|) 

𝐹||(X,Y,Z)= 

[(x+y+z).(x+y+𝑧|).(x+𝑦|+z).(x+𝑦|+

𝑧|).(𝑥|+y+z).(𝑥|+y+𝑧|).(𝑥|+𝑦|+z).(

𝑥|+𝑦|+𝑧|)]′ 

according to the property 𝑎|.𝑏|=𝑎| +

𝑏| 

=(x+y+z)+(x+y+𝑧|)+(x+𝑦|+z)+ 

(x+𝑦|+𝑧|)+(𝑥|+y+z)+(𝑥|+y+𝑧|)+ 

(𝑥|+𝑦|+z)+(𝑥|+𝑦|+𝑧|) 

Cdnf=                                                     

(x+y+z)+(x+y+𝑧|)+(x+𝑦|+z)+(x+𝑦|

+𝑧|)+(𝑥|+y+z)+(𝑥|+y+𝑧|)+ 

(𝑥|+𝑦|+z)+(𝑥|+𝑦|+𝑧|) 

=1 

 

 

CONCLUSION:- 

We conclude that after brief study of 

Boolean algebra we are able to do convert 

ccnf to cdnf and we prove ccnf expression is 

zero and cdnf expression is one. And we 

construct truth table for both ccnf and cdnf 

after completion we understand ccnf and 

cdnf deeply. Now we are able to do ccnf and 

cdnf problems  

 

 

 


