22BT401 DOWNSTREAM PROCESSING

Hours Per Week :

L	Т	Р	С	
3	0	2	4	

PREREQUISITE KNOWLEDGE: Chemical engineering principles in biotechnology, Microbiology and fermentation technology.

COURSE DESCRIPTION AND OBJECTIVES:

The course presents the state of the art in downstream processing of biotechnological products. It provides knowledge on different techniques for solid-liquid separation, product release, concentration and purification of valuable bio-products with a focus on the integrated process.

MODULE-1

9L+0T+6P=15 Hours

UNIT-1

DOWNSTREAM PROCESSING METHODS

Need & Importance of downstream processing in biotechnology, range and characteristics of bioproducts, characteristics of fermentation broths, cell disruption - physical, chemical & mechanical methods, filtration, centrifugation, extraction, A few case studies highlighting the down stream processing steps involved in the production of ethanol, citricacid.

UNIT-2

15L+0T+10P=25 Hours

CELL DISRUPTION TECHNIQUES

Equipment's for cell disruption-bead mill, homogenizer, ultrasonicator, Industrial filters - plate and frame filter, pressure leaf filter, continuous rotary filters, Industrial-scale centrifuges - disc bowl, tubular and decanter centrifuges, Equipment for extraction and industrial scale contactors.

PRACTICES:

- Cell disruption techniques Ultra sonication.
- Cell disruption techniques Enzymatic vs Chemical methods.
- Solid liquidseparation Centrifugation.
- Aqueous two phase extraction of biologicals.
- Production of ethanol.

MODULE-2

MEMBRANESEPARATIONTECHNOLOGY

Membrane separations - advantages, classification, factors affecting the separation process, Principles of dialysis & electro-dialysis, Sophisticated chromatographic techniques, Crystallization - theoretical considerations, drying, freeze drying, lyophilized products, polishing and product formulation.

UNIT-2

UNIT-1

15L+0T+10P=25 Hours

9L+0T+6P=15 Hours

Design of membrane module configurations, design of equipment for microfiltration, ultrafiltration, reverse osmosis, HPLC, ion- exchange, Gel filtration, affinity, GC, Crystallization - Equipment for Batch crystallization, Industrial drying equipment design - rotary drum drier, Equipment for Freeze drying - Lyophilizer.

source: https:// bioprocessintl.com/ downstream-processing/ downstream-single-usetechnologies/downstreamprocessing-single-usesolutions/

SKILLS:

- Performing experiments for product recovery.
- ✓ Solving problems related to various unit operations.
- Evaluating the product yield post purification.

PRACTICES:

- Performance evaluation of a reverse osmosis unit.
- Concentration of proteins by dialysis.
- Compound / product analysis by HPLC.
- Product polishing by Freeze drying / Lyophilization.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Apply the principles of downstream processing in biotechnology industry.	Apply	1,2	1,2,6,9,10
2	Develop downstream processing flowsheets for product recovery and isolation.	Develop	1	2,3,6,9,10
3	Analyze economics of "low volume and high value" and "high volume and low value" products.	Analyze	1	2,4,9,10
4	Design of sequence of unit operations for bio- separations.	Create	1,2	3,4,6,9,10

TEXT BOOKS:

- 1. Belter, P.A., E.L.Cusslerand Wei-Houhu, "Bio separations–Down stream Processing for Biotechnology", 1st edition, John Wiley, 1988.
- 2. B. Sivasankar, "Bio separations Principles and Techniques", 1st edition, PHI Publications, 2009.

REFERENCE BOOKS:

- 1. S.N. Mukhopadhyay, "Process Biotechnology Fundamentals", 2nd edition, Viva, 2005.
- 2. P. F. Stanbury and A. Whitaker, "Principles of Fermentation Technology", 2nd edition, Elsevier, 2008.
- 3. R.O. Jenkins, "Product recovery in bioprocess technology", Butterworth Heinemann Limited, Oxford, 1992.