22MT110 MATRICES AND DIFFERENTIAL EQUATIONS

Hours Per Week :

L	T	P	C
3	2	0	4

PREREQUISITE KNOWLEDGE:

School level Mathematics, Differentiation and Integration

COURSE DESCRIPTION AND OBJECTIVES:

This course will help the students to learn the concepts of matrices and differential equations. Also they can apply these concepts in any engineering and science domains.

MODULE-1

12L+8T+0P=20 Hours

MATRICES

Definition of matrix; Types of matrices, Algebra of matrices, adjoint of a matrix, inverse of a matrix by elementary operations, Rank of a matrix, Echelon form, Normal form.

12L+8T+0P=20 Hours

APPLICATIONS OF MATRICES

Consistency of system of linear equations, Solution of system of linear equations by Gauss elimination method and Gauss Jordan method.

Eigen values and Eigen vectors (up to 3×3 matrices only) and properties (without proofs).

PRACTICES:

- Identify the matrix and do various operations on it.
- Finding rank of matrix.
- Solving a system of equation using matrix method
- Find Eigen values and Eigen vectors.

MODULE-2

UNIT-1
12L+8T+0P=20 Hours

ORDINARY DIFFERENTIAL EQUATIONS

First Order Differential Equations: Introduction to ODE, variable separable method, homogenous and non-homogenous differential equations, linear differential equations, Bernoulli's equations.

Second Order Differential Equations: Linear Homogeneous and non-homogeneous differentia equations with constant coefficients (RHS is eax, $\mathrm{xn}, \sin (\mathrm{ax})$ or $\cos (\mathrm{ax})$).

APPLICATIONS OF ODE

Applications of ODE: Newton's law of cooling, Law of natural growth and decay, LC circuit.

PRACTICES:

- Finding Solutions of Differential Equations.
- Apply the concepts of Differential equations.

COURSE OUTCOMES:

Upon successful completion of this course, students will have the ability to:

CO No.	Course Outcomes	Blooms Level	Module No.	Mapping with POs
1	Apply elementary transformations to find the rank and inverse.	Apply	1	$1,2,9,10,12$
2	Solve the Ordinary differential equations.	Apply	2	$1,2,9,10,12$
3	Apply the differential equation in various problems.	Apply	2	$1,2,9,10,12$
4	Examine the consistency of the system of linear equations.	Analyse	1	$1,2,9,10,12$

TEXT BOOKS:

1. N. P. Bali, K. L. Sai Prasad, "A Textbook of Engineering Mathematics I, II, III", 2nd Edition, Universal Science Press, New Delhi, 2018.
2. B. S. Grewal, "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, 2018.

REFERENCE BOOKS:

1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley \& Sons, Inc., 2015
2. H. K. Dass and Er. Rajanish Verma, "Higher Engineering Mathematics", 3rd Edition, S. Chand \& Co., 2015.
3. B. V. Ramana, "Advanced Engineering Mathematics", TMH Publishers, 2020.
