20CS002 INTERNET OF THINGS

Hours Per Week:

L	Т	Р	С
3	-	2	4

Total Hours:

L	Т	Р	WA/RA	SSH/HSH	cs	SA	S	BS
45	-	30	15	30	-	5	5	-

Course Description and Objectives:

This course gives a foundation in the Internet of Things, including the components, tools, and analysis by teaching the concepts behind the IoT and a look at real-world solutions.

The students will be able to:

COs	Course Outcomes	POs
1	Compare and differentiate the IoT with other technologies	
2	Design and develop solutions using IoT	
3	Identify the need of domain specific IoT application sensors and Operating Systems	
4	Apply the internet and mobile technologies for IoT communications	
5	Analyse and understand the different domain specific IoT applications	2

SKILLS:

- ✓ Design domain specific IoT device.
- ✓ Identify the level of IoT applications.
- ✓ To use various domain specific hardware like sensors, actuators and controllers.
- ✓ To integrate emerging technologies like Cloud Computing, Big data, Mobile Technologies and so on.

VFSTR 5

UNIT-I

Internet of Things Fundamentals: Introduction to Internet of Things; Physicaldesign& Functional Block of IOT, Device architectures, CoreloT Functional Stack; Resource constrained devices; Sensors and Components; IOT Enabling Technologies.

Societal Benefits of IoT (Domain Specific), Risks, Privacy, and Security.

UNIT-II

Network and Communication Protocols: Network Components; Internet Structure, Wireless Protocols; IoT Communication Model & APIs, Wireless Protocol Stack, IOT levels.

Unit III

Introduction to Systems Design & Development: IoT system building blocks, Arduino, Node MCU– Board details, IDE programming; Raspberry Pi-Model and Interfaces, Platform: Axonize, Blynk IoT platform, Fogwing

UNIT-IV

M2M & SYSTEM MANAGEMENT WITH NETCONF-YANG:SDN; NFV;Need for IOT Systems Management; SNMP-NETCONF, YANG; IOT Systems management with NETCONF-YANG.

HNIT-V

Programming and Case Study: Embedded C vs Python; Operating systems for constrained devices; Domain Specific IoT Application, Task Support IoT Example: The Refrigerator, Weather Monitoring System – Case study- Design, Programming and Execution.

LABORATORY EXPERIMENTS

LIST OF EXPERIMENTS Total hours: 30

1. The Study

- a. **Overview of the IoT Kit** -Common Components, Power Supplies, Sensors, Microcontrollers, Single Board Computers, LEDs and Displays
- b. **Safeguards and Basics-** Handling Various Components Safely, Voltage Levels and Handling Mains, Polarity, Indicators and Conventions, Handling Displays, Using the Soldering Iron.
- c. **Understand the Common components** Breadboards, Jumper Wires, Soldering Irons, Wire Strippers, Multi-meter.

2. Theusage of various components:

- a. **Power Supplies -** Breadboard Power Supply ,USB Power Supply, 12V Power Supply, Power Strips, LiPo Batteries
- b. **The Need and usage of Sensors** Pulse, Water, Current Non-Invasive Current, Temperature (Analog), Temperature (Digital), Humidity, Simple LED, RGB LED, Switch, Hall Magnetic, Reed Relay, Relay, Photo Resistor, Joystick.
- Working with LEDs and Displays RGB LED Strip, OLED Displays, OrangePi 2G LCDs, 7" HDMI LCDs

3. Microcontrollers and SoC:

- Understand the Roll and Working with Microcontrollers Arduino Mega, Arduino Pro Micro, NodeMCII
- b. **The Usage Single Board Computers -** Raspberry Pi 3, Raspberry Pi Zero

4. Study of Communications Systems and Platform:

- a. MQTT, REST, XMPP, WebSockets, etc.
- b. Bluetooth, Wi-Fi, ZigBee, LoRa
- c. Platform: Axonize, Blynk IoT platform, Fogwing

5. Design and Development of an IoT Application with Cloud Integration.

- a. Weather Monitoring System (Temp, Air, Moisture, Humidity)
- b. Smart Home. (Temp, Water, Appliances)
- c. Patent Health Monitoring System. (Heart Rate, BP,Temp)

VFSTR 6

TEXT BOOKS:

- 1. ArshdeepBahga and Vijay Madisaetti, "Internet of Things –A Hands-on Approach", University Press, 2015.
- 2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things", Cisco Press, 2017

REFERENCE BOOKS:

- 1. Rajkamal, "Internet of Things: Architecture, Design Principles and Applications", McGraw Hill Higher Education, 2016.
- 2. Peter Waher, "Learning Internet of Things", Packt Publications, 2015
- 3. Raj Kamal, "Embedded Systems", 2nd Edition, Tata McGraw Hill, 2009.
- 4. Lyla B Das, "Embedded Systems an Integrated Approach", 1stEdition, Pearson, 2012.

VFSTR