Course Code	Course Title	L	T	P	C
20SE015	STABILITY OF STRUCTURES	3	0	0	3

PRE-REQUISITE COURSES: APPLIED MATHEMATICS, STRENGTH OF MATERIALS, STRUCTURAL ANALYSIS.

COURSE OBJECTIVES:

The objective of this course deals with stability problems in structural forms and systems. Study the concept of buckling of column, frames, torsional and plates.

COURSE OUTCOMES:

At the end of the course student will be able to

CO's	Course Outcomes	PO's
1	The buckling concept of column and Frames	2.3
2	Apply the torsional bucking and plates for buckling concept	1,2
3	Apply the inelastic behaviour of materials and analyse the inelastic character of column	1,2,3
4	To analyse the frame structures	2,3
5	To analyse the plate structures	2,3

SKILLS:

- ✓ Able to analyze plate, frame and beam column.
- ✓ Able to form differential equations for plate buckling

UNIT-I:

BUCKLING OF COLUMNS: Introduction – concepts of stability – methods of Neutral Equilibrium– Euler column – Eigen value problem – Axially loaded column – Eccentrically loaded column.

UNIT-II:

ENERGY PRINCIPLE: Raleigh Ritz method – Galerkin method – Numerical methods (New mark's difference and matrix methods).

UNIT-III:

BEAMS AND BEAM COLUMNS: Introduction – Theory of beam column - lateral buckling of beams – Beam column with concentrated and distributed loads – Effect of axial load on bending stiffness.

UNIT-IV:

BUCKLING OF FRAMES: Introduction – Modes of buckling – Critical load using various methods –Neutral equilibrium – Slope deflection equations, matrix method - Analysis of rigid jointed frames with and without sway

UNIT-V:

BUCKLING OF PLATES: Differential equation of plate bucklings – critical load on plates for various boundary conditions – Energy method – Finite difference method.

TEXT BOOKS:

- 1. Alexandar Chajes, "Principles of Structural Stability Theory", Prentice Hall, New Jersey,1980.
- 2. Timoshenko.S.P, and Gere.J.M, "Theory of Elastic Stability", McGraw Hill Book Company, 1963.

REFERENCES:

- 1. Ashwini Kumar, "Stability Theory of Structures", Allied publishers Ltd., New Delhi, 2003
- 2. Chajes, A. "Principles of Structures Stability Theory", Prentice Hall, 1974.
- 3. Gambhir, "Stability Analysis and Design of Structures", springer, New York, 2004.
- 4. Simitser.G.J and Hodges D.H, "Fundamentals of Structural Stability", Elsevier Ltd., 2006.
- 5. Allen and Bulson, "Background to buckling", McGraw-Hill, 1980.
- 6. N.G.R.Iyengar, "Elastic stability of structural elements", Macmillan India Ltd., 2007.