19AG213 IRRIGATION ENGINEERING

Hours	Dor	Week	
110015	L CI	VVCCV	

L	Т	Ρ	С
2	0	2	3

Total	Hours	
TOLAI	110015	٠

L	Т	Р	WA/RA	SSH/HSH	CS	SA	S	BS
30	-	30	10	45	-	-	-	-

COURSE DESCRIPTION AND OBJECTIVES:

To acquaint and equip the students with the basic principles of soil-plant water relations and their interactions and to develop competency to design water conveyance systems and surface irrigation systems in the field.

COURSE OUTCOMES:

Upon completion of the course, student will able to achieve the following outcomes:

COs	Course Outcomes	POs
1	Apply their knowledge on measurement of irrigation flow quantities and location specific on-farm water management strategies in agriculture for increasing yields through water use efficiencies and reducing cost of cultivation.	1
2	Analyse the problems faced by the farmers in irrigated agriculture in view of allocation and distribution of water to the various crops in various seasons.	2
3	Evaluate the trend and current scenario of investments and returns	4
	on irrigation sector in tune of local and global approach.	
4	Create and development of new irrigation schemes, projects and structures for various crops in agriculture, horticulture and sericulture.	3
5	Create and take up the various projects on the present research gaps in irrigation sector to promote and address the demands and needs of the farming community.	3
6	Understand and manifest the scientific and technical aptitude and attitude of irrigation engineering at individual capacity and also with a team work approach for over all development of farmers in Indian agriculture.	9

SKILLS:

- ✓ Determination field capacity and wilting point.
- ✓ Design of underground pipeline system.
- Estimation and Evaluation of various irrigation efficiencies, border, furrow, check basin irrigation method.

Source :

https://www.imgc.nl/wpcontent/uploads/2017/03/ 52de913 ab63e72c42d000002_541 76946_x.jpg?swifty=1

II Year II Semester 🔳 🔳

UNIT -I

Major and medium irrigation schemes of India: Purpose of irrigation, environmental impact of irrigation projects, source of irrigation water, present status of development and utilization of different water resources of the country.

UNIT - II

Measurement of irrigation water: Weir, flumes and orifices and other methods; open channel water conveyance system : design and lining of irrigation field channels, on farm structures for water conveyance, control & distribution.

UNIT - III

Underground pipe conveyance system: Components and design; land grading: criteria for land levelling land levelling design methods, estimation of earth work; soil water plant relationship: soil properties influencing irrigation management.

UNIT -IV

Soil water movement: Infiltration, soil water potential, soil moisture characteristics, soil moisture constants, measurement of soil moisture, moisture stress and plant response; water requirement of crops: concept of Evapotranspiration (ET), measurement and estimation of ET, water and irrigation requirement of crops, depth of irrigation, frequency of irrigation.

UNIT -V

Irrigation efficiencies: Surface methods of water application: border, check basin and furrow irrigationadaptability, specification and design considerations.

LABORATORY EXPERIMENTS

LIST OF EXPERIMENTS

- 1. Measurement of soil moisture by different soil moisture measuring instruments.
- 2. Measurement of irrigation water.
- 3. Measurement of infiltration characteristics.
- 4. Determination of bulk density.
- 5. Determination field capacity and wilting point.
- 6. Estimation of evapotranspiration .
- 7. Study on various land grading methods.
- 8. Design of underground pipeline system .
- 9. Estimation of various irrigation efficiencies .
- 10. Study of advance, recession and computation of infiltration opportunity time .
- 11. Infiltration by inflow-outflow method.
- 12. Evaluation of border irrigation method .
- 13. Evaluation of furrow irrigation method.
- 14. Evaluation of check basin irrigation method
- 15. Practical eaminations.

TEXT BOOK :

1. Michael A.M. 2012,. Irrigation: "Theory and Practice". Vikas Publishing House New Delhi.

REFERENCE BOOKS:

- 1. Allen R. G., L. S. Pereira, D. Raes and M. Smith. 1998, "Crop Evapotranspiration guidelines for computing crop water requirement". Irrigation and drainage Paper 56, FAO of United Nations, Rome.
- 2. Murthy VVN. 2013, "Land and Water Management Engineering". Kalyani Publishers, New Delhi.

TOTAL HOURS: 30

L-6

I -6

L-6

L-6

L-6