# 19EE205 ANALOG ELECTRONICS

### Hours Per Week:

| L | Н | Р | O |
|---|---|---|---|
| 3 | - | 2 | 4 |

PREREQUISITE COURSE: Basic Electrical and Electronics Engineering.

#### COURSE DESCRIPTION AND OBJECTIVES:

This course deals with fundamental concepts of semi-conductor devices and circuits. Along with semi-conductor devices it also deals with the op-amps. The objective of the course is to enable students to hook up and understand working of simple electronic circuits such as clippers, clampers, amplifiers, filters and regulators.

# **COURSE OUTCOMES:**

Upon completion of the course, the student will be able to achieve the following outcomes:

| COs | Course Outcomes                                                                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Understand the characteristics of diode, transistors, 555 timer and op-amp.                                                                                     |
| 2   | Analyse various rectifier and amplifier circuits.                                                                                                               |
| 3   | Design sinusoidal and non-sinusoidal oscillators.                                                                                                               |
| 4   | Apply the knowledge of KVL and KCL to obtain voltage / current waveforms at different points in analog electronic circuits such as diode clippers and clampers. |
| 5   | Conduct experiment using analog electronic components to function as amplifier, comparator, rectifier, ADC and DAC.                                             |

# SKILLS:

- **ü** Analyse the operation of transistor based multistage and feedback amplifiers.
- ü Design of amplifier for specified gain.
- **ü** Design and analysis of op-amp based function generator.
- ü Realize multivibrator circuits using 555 timer.



Source: https:// i.ytimg.com/vi/ KX38KmkLM-8/ maxresdefault.jpg

VFSTR 59

UNIT-I L-9

**DIODE CIRCUITS:** P-N junction diode, I-V characteristics of a diode, Current equation of diode and temperature variations, Analysis of half-wave and full-wave rectifiers with capacitor filter, Zener diode, Design of voltage regulator using Zener diode, Basic operation of diode clamping circuits and diode clipping circuits.

UNIT - II L - 9

**TRANSISTORS: BJT:** Formation of PNP and NPN transistor, Transistor current components, Transistor as an amplifier-CB, CE and CC configurations with performance comparison.

FET: Working principles and characteristics of JFET and MOSFET.

UNIT - III L - 9

**TRANSISTOR BIASING (BJT & FET):** DC load line, AC load line and selection of operating point, Need for biasing, Various biasing techniques Fixed bias, Collector to base bias and self bias with stability factors; Various compensation circuits, Thermal runaway and thermal stability.

UNIT-IV L-9

**OPERATIONAL AMPLIFIERS:** Ideal op-amp, Non-idealities in an op-amp, Inverting and non-inverting amplifier, differential amplifier.

**LINEAR APPLICATIONS OF OP-AMP:** V-I converters, Sample & Hold circuits, Instrumentation amplifier, Integrator, Active filter, P, PI and PID controllers using op-amp.

UNIT-V L-9

**NON LINEAR APPLICATIONS:** Voltage comparators, Hysteretic comparator, Square-wave and triangular-wave generators; Precision half wave rectifier, Peak detector, Oscillators (Wein bridge and phase shift), 555 timer and its applications.

VFSTR 60

# LABORATORY EXPERIMENTS

LIST OF EXPERIMENTS TOTAL HOURS: 30

- 1. Study of clipping operation.
- 2. Study of clamping operation.
- 3. Input and Output Characteristics of BJT.
- 4. Input and Output Characteristics of MOSFET.
- 5. Design of oscillator circuits.
- 6. Design of basic arithmetic circuits such as adder and subtractor.
- 7. Design of Integrator and differentiator.
- 8. Design of voltage comparators using op-amp.
- 9. Design of active LPF/HPFusing op-amp.
- 10. Design of Astable multi vibrator using op-amp.
- 11. Schmitt trigger by using BJT/op-amp/555 Timer.

# **TEXT BOOKS:**

- Ramakant A. Gayakwad, "Op-Amps and Linear Intergrated Circuits", 4<sup>th</sup> edition, PHI, 2000.
- 2. D. Roy Choudhary and Shail.B.Jain, "Linear Integrated Circuits", 5<sup>th</sup> edition, New Age International Publishers, 2018.

# **REFERENCE BOOKS:**

- R.L. Boylestad and Lovis Nashelsky, "Electronic Devices and Circuits Theory", 10<sup>th</sup> edition, Pearson Eduction, 2010.
- 2. A.S. Sedra and K.C. Smith, "Microelectronic Circuits", 7<sup>th</sup> edition, New York, Oxford University Press, 2017.

VFSTR 61