19PE211 PETROLEUM EXPLORATION

Hours Per Week:

L	T	Р	С
3	1	-	4

Total Hours:

L	Т	Р	WA/RA	SSH/HSH	8	SA	S	BS
45	15	-	25	50	-	-	5	5

PREREQUISITE COURSES: Petroleum Geology

COURSE DESCRIPTION AND OBJECTIVES:

This course mainly deals with exploring and analyzing active processes of the earth through physical measurement. The objective of this course is to expose students to a broad spectrum of geophysics, including resource exploration, environmental geophysics, seismology and tectonics.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to active the following outcomes:

COs	Course Outcomes	
1	Identify the physics and geology that form the basis for geophysical observation and measurements	2
2	Formulate seismic, magnetic & gravitational methods of exploration	2
3	Apply skills developed in fundamentals of geophysical problems	1
4	Interpret different seismic profiles.	4
5	Analyze the principles of geophysical measurement and application of physics based mathematical models	4
6	Design a reservoir model by using appropriate software	5

SKILLS:

- ✓ Identify the physical processes governing the behavior of common geophysical systems.
- ✓ Explain the principles of applying geophysical methods to societally relevant problems, including natural hazards, resource exploration and management, and environmental issues.
- ✓ Quantitatively describe the behavior of natural systems and the principles of geophysical measurement with physics-based mathematical models.
- ✓ Identify different oil bearing structures from different geophysical measurements viz, magnetic gravity, seismic and analyzing the same.

Melenta degree handing or confin to consider of a construction of

SOURCE:

https://krisenergy.com/ company/about-oiland-gas/exploration/

VFSTR 65

UNIT- I L-9, T-3

REFLECTION SEISMIC: Basic principle and objective; Theory of seismic wave propagation; Types of seismic waves; Absorption and attenuation, reflection, refraction, diffraction and mode conversion of seismic waves.

UNIT-II L-9, T3

2-D AND 3-D SEISMIC DATA ACQUISITION: Survey objective; Geological plan; Logistics in the area; Recording technique; Seismic velocities; Geometry of seismic wave path; Recording systems, geophones, cables and ground electronics; Common depth point technique.

UNIT-III L-9, T3

SEISMIC DATA PROCESSING: Objective, concept of auto-correlation; Cross-correlation and convolution; Understanding processing parameters such as de-convolution, NMO, velocity analysis, filtering, stacking and migrations; Understanding the concept of time domain and frequency domain for seismic wave and fourier transform; Processing systems.

UNIT-IV L-9, T3

SEISMIC DATA ANALYSIS AND INTERPRETATION: Objective; Understanding seismic data in terms of geological information, structural information, stratigraphic information, seismic attributes; Direct detection of hydrocarbons: AVO technique; Inversion integrating geophysical data with geological understanding and identifying prospects for drilling.

REFRACTION METHOD: Basic principle; Geometry of refracted wave path; Methodology of refraction profiling; Field surveys; Recording instrument and energy source; Corrections applied to refraction data; Interpretation of refraction data for understanding basin configuration.

UNIT-V L-9, T3

GRAVITY METHOD: Basic principle and objective, recording instrument, recording technique, data analysis including various gravity corrections, gravity anomalies and geological features.

MAGNETIC METHOD: Basic principle and objective, recording instrument, data analysis including various magnetic corrections, magnetic anomalies and geological features.

AEROMAGNETIC METHOD: Recording technique and objective, operations advantage.

TEXT BOOKS:

- 1. Lowri, W., "Fundamentals of Geophysics", 2nd edition, Cambridge University Press. 1997.
- 2. Telford, W. M, Geldart L.P., Sheriff, "Applied Geophysics", 2nd edition, R.E., Keys, D.A.1990.

REFERENCE BOOKS:

- 1. Dobrin M. B., "Introduction to Geophysical Prospecting", McGraw-Hill, New York, Inc. 1960
- 2. Robinson, E. S. and Coruh C., "Basic Exploration Geophysics", 2nd edition, John Willey and Sons, New York, 1998.
- 3. Anstey N. A., "Seismic Interpretation: The Physical Aspects", Boston, IHRDC.

VFSTR 66