
7

21BC103 PROGRAMMING FOR PROBLEM SOLVING- I

Course description and objectives:

This course is aimed to impart knowledge on basic concepts of C programming language and

problem solving through programming. It covers basic structure of C program, data types,

operators, decision making statements, loops, functions, static data structures. At the end of this

course students will be able to design, implement, test and debug modular C programs.

Course Outcomes:
The student will be able to:

• Learn about fundamentals of computer and programming language, draw flow chart to

solve given problem logically and develop algorithm to solve given program.

• Comprehend the general structure of C program, concepts of variable, datatype, operator

and be able to create a C program to demonstrates these concepts.

• Use the concept of branching and looping to design efficient C program and be able to

apply the concepts of user defined function and recursion to support reusability.

• Design an application using the concepts of array, pointer, structure and file management

to solve real world problem.

Skills:

• Analysis of the problem to be solved.

• Design of algorithm/solution for a given problem.

• Identification of suitable data types for operands.

• Application of suitable control statements for decision making.

Activities:

• Design of non-recursive and recursive functions to perform different tasks.

• Selection of static or dynamic data structures for a given problem and manipulation of

data items.

• Development of C programs that are understandable, debuggable, maintainable and more

likely to work correctly in the first attempt.

Syllabus

UNIT - I 12Hours

INTRODUCTION TO ALGORITHMS AND PROGRAMMING LANGUAGES: Basics of

algorithms, Flowcharts, Generations of programming languages. Introduction to C: Structure of a

C program; pre-processor statement, Inline comments, Variable declaration statement, Executable

statement; C Tokens: C Character set, Identifiers and Keywords, Type Qualifiers and Type

Modifiers, Variables and Constants, Punctuations, and Operators.

UNIT - II 12Hours

DATA TYPES AND OPERATORS: Basic data types; Storage classes; scope of a variable;

Formatted I/O; Reading and writing characters; Operators: Assignment, Arithmetic, Relational,

Logical, Bitwise, Ternary, Address, Indirection, Sizeof, Dot, Arrow, Parentheses operators;

Expressions: Operator precedence, Associative rules.

L T P C

3 - 2 4

8

UNIT - III 12Hours

CONTROL STATEMENTS: Introduction to category of control statements; Conditional

branching statements: if, if - else, nested-if, if – else ladder; Switch; Iterative statements: for, while,

do - while, Nested loops; Break; Jump; goto and continue.

UNIT - IV 12Hours

ARRAYS: Introduction; Types of arrays; Single dimensional array: Declaration, Initialization,

Usage, Reading, Writing, Accessing, Memory Representation, Operations; Multidimensional

arrays.

UNIT - V 12Hours

FUNCTIONS: User-defined functions; Function declaration: Definition, Header of a function,

Body of a function, Function invocation; Call by value; Call by address; Passing arrays to functions;

Command line arguments; Recursion; Library Functions.

LABORATORY EXPERIMENTS

Experiment 1: Write a C program to display a simple text on the standard output device using

puts ().

Experiment 2: Every character holds an ASCII value (an integer number in the range of 0 to 255)

rather than that character itself, which is referred to as ASCII value. Likewise, for a given input

whether it is character or digit or special character or lower case or upper-case letter, find

corresponding ASCII value.

Experiment 3: Write a C program to swap the two integers with and without using additional

variable. Example: Before swapping values of a =4, b = 5 and after swapping a = 5, b = 4.

Experiment 4: Write a C program to check whether a given character is a vowel or consonant. Hint:

Read input from the user, and check whether it is an alphabet or not. If it is an alphabet, then check

whether it is a vowel or a consonant. Otherwise display it is not an alphabet.

Experiment 5: The marks obtained by a student in ‘n’ different subjects are given as an input by

the user. Write a program that calculates the average marks of given ‘n subjects and display the

grade.

Experiment 6: Write a C Program to find the greatest factor of a given input other than itself.

Example: Consider, 30 is the given input, its greatest factor is 15.

Experiment 7: (a) Write a C program to check whether a given number is an Armstrong number or

not.

Hint: An Armstrong number is a number which is equal to the sum of digits raised to the power of

total number of digits in the number.

Example: Consider the Armstrong numbers are: 0(01), 1(11), 2(21), 3(31), 153(13+53+33=153),
370(33+73+03), 407(43+03+73), etc.

(b) Write a C Program to print the series of prime numbers in the given range.

Hint: The given number is prime if it is divisible only by one and itself.

Example: if the range is 5 and 15, return 5, 11 and 13 as the series of prime numbers in the given

range.

9

Experiment 8: (a) Write a C Program to print Floyd triangle for the user given number of rows. If

the user entered 4 rows, then the output follows:

1

2 3

4 5 6

7 8 9 10

(b) Write a C Program to print the given number of times in a row to form a diamond shape.

Experiment 9: Write a C Program to check whether the given number is a palindrome or not.

Hint: To check whether a number is a palindrome or not, reverse the given number and compare

the reversed number with the given number, if both are same then the number is palindrome

otherwise not.
Example: Given Number = 121, Reversed number = 121. Hence, given number is palindrome.

Experiment 10: Write a program to search for a given number in the given list of numbers.

Example: Read set of numbers L={2,4,6,1}. Search whether 4 is present in the given list or not.

(b)Write a program to reverse the given list, of size n.

Example: If the list, L= [1,2,3], after reversing it, the list should be, L= [3,2,1]

Experiment 11: Write a C program to perform addition, subtraction, multiplication operations on

the two given matrices using functions.

Experiment 12:

Write a C program to swap two numbers using call by value and call by reference.

TEXTBOOKS:

1. Behrouz A. Forouzan, Richard F. Gilberg, “Programming for Problem Solving”, 1st edition,

Cengage, 2019.

2. Ajay Mittal, “Programming in C - A practical Approach”, 1st edition, Pearson Education, India,

2010.

REFERENCE BOOKS:

1. Reema Thareja, “Computer Fundamentals and Programming in C”, 1st edition, Oxford

University Press India, 2013.

2. Herbert Schildt, “C: The Complete Reference”, 4th edition, Tata McGraw-Hill, 2017.

3. Byron S Gottfried, “Programming with C”, 4th edition, Tata McGraw-Hill, 2018.

