17VL012 ASIC

Hours Per Week:

L	Т	Р	С
4	-	-	4

Total Hours:

L	Т	Р	WA/RA	SSH/HSH	cs	SA	S	BS
60	•	-	15	30		5	5	-

Course Objectives:

- To prepare the student to be an entry-level industrial standard ASIC or FPGA designer.
- To give the student an understanding of issues and tools related to ASIC/FPGA design and implementation.
- To give the student an understanding of basics of System on Chip and platform based design.

Course Outcomes:

Upon successful completion of this course student should be able to:

- Demonstrate VLSI tool-flow and appreciate FPGA architecture.
- Understand the issues involved in ASIC design, including technology choice, design
 management, tool-flow, verification, debug and test, as well as the impact of technology
 scaling on ASIC design.
- Understand the algorithms used for ASIC construction.
- Understand the basics of System on Chip, on chip communication architectures like AMBA, AXI and utilizing Platform based design.
- Appreciate high performance algorithms available for ASICs IC.

SKILLS:

- Digital ASIC design and verification techniques
- Detailed knowledge of the complete ASIC design flow

UNIT-I

Types of ASICs, VLSI Design flow, Programmable ASICs - Antifuse, SRAM, EPROM, EEPROM based ASICs. Programmable ASIC logic cells and I/O cells. Programmable interconnects. Latest Version - FPGAs and CPLDs and Soft-core processors.

UNIT - II

Trade off issues at System Level: Optimization with regard to speed, area and power, asynchronous and low power system design. ASIC physical design issues, System Partitioning, Power Dissipation, Partitioning Methods.

UNIT - III

ASIC floor planning, Placement and Routing.

UNIT-IV

System-On-Chip Design - SoC Design Flow, Platform-based and IP based SoC Designs, Basic Concepts of Bus-Based Communication Architectures, On-Chip Communication Architecture Standards, Low-Power SoC Design.

UNIT - V

High performance algorithms for ASICS/ SoCs as case studies – Canonic Signed Digit Arithmetic, KCM, Distributed Arithmetic, High performance digital filters for sigma-delta ADC, USB controllers, OMAP

TEXT BOOKS

- 1. M.J.S. Smith,"Application Specific Integrated Circuits", Pearson, 2003
- 2. H.Gerez, "Algorithms for VLSI Design Automation", John Wiley, 1999.

REFERENCE BOOKS

- 1. J..M.Rabaey, A. Chandrakasan, and B.Nikolic, "Digital Integrated Circuit Design Perspective (2/e)", PHI 2003.
- 2. D. A.Hodges, "Analysis and Design of Digital Integrated Circuits (3/e)", MGH 2004.
- Hoi-Jun Yoo, KangminLeeand Jun Kyong Kim, "Low-Power NoC for High-Performance SoC Design", CRC Press, 2008.
- 4. S.Pasricha and N.Dutt," OnChip Communication Architectures System on Chip Interconnect, Elsveir", 2008.

ACTIVITIES:

- o Design a SRAM memory cell.
- Floor planning, routing and placing of adder in ASIC.
- o Design of digital filter of ADC.